Experimental investigations on central vortex core in swirl spray flames using high-speed laser diagnostics

نویسندگان

چکیده

Centrally staged swirl combustion can effectively reduce NO x emission. However, the complex field is susceptible to producing large-scale coherent structures, such as precessing vortex core and central (CVC). This study mainly investigates effect of CVC on flow flame in a centrally spray combustor at elevated temperature pressure using 10 kHz high-speed CH * chemiluminescence (CL), 20 particle image velocimetry, 2 O planar laser-induced fluorescence (PLIF). For pilot flame, both CL PLIF are fork-shaped with three long parts, middle parts dynamics indicate structure. stratified structure exists an extended strip area strong vorticity near centerline combustor. The analysis proper orthogonal decomposition modes shows that motion swing, followed by precessing. Simultaneous diagnostics indicates entrainment leads transport from shear layer region In general, signal distributed two positive velocity regions, pilot/main jet around CVC. Taking advantage radical transportation potential method improve mixing combustor, distribution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.

Simultaneous planar laser-induced incandescence, hydroxyl radical planar laser-induced fluorescence, and droplet Mie scattering are used to study the instantaneous flame structure and soot formation process in an atmospheric pressure, swirl-stabilized, liquid-fueled, model gas-turbine combustor. Optimal excitation and detection schemes to maximize single-shot signals and avoid interferences fro...

متن کامل

An Experimental Study of Vortex-flame Interaction in Counterflow Spray Diffusion Flames

The extinction behavior of methanol counterflow spray diffusion flames was investigated using a combination of formaldehyde planar laser-induced fluorescence (PLIF) and phase Doppler measurements. Extinction was brought about quasi-steadily, by progressively increasing the flow rates of both oxidizer and fuel side, and unsteadily, by generating a vortex on the oxidizer side. The unsteady experi...

متن کامل

Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement

The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...

متن کامل

An Experimental formulation for PFI injector penetration length versus time and pressure using high speed spray imaging results

Recently, there have been problems with particulate matter pollution in diesel engines and it has reduced production rate of these engines and also, it has accelerated the development of new technologies for PFI and GDI gasoline engines. The spray characteristics has significant impact on the combustion efficiency, power and emissions on internal combustion engines. In This study, effect of inj...

متن کامل

Nanostructured tracers for laser-based diagnostics in high-speed flows

The potential application of aggregates of nanoparticles for high-speed flow diagnostics is investigated. Aluminum nanoparticles around 10 nm in diameter are produced by spark discharge in argon gas. Through rapid coagulation and oxidation, aggregates of small effective density are formed. They are characterized by microscopy and their aerodynamics and optical properties are theoretically evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2023

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0141795